hodisa n ta bog‘liqsiz tajribalarda nA marta ro‘y bersin. nAson hodisaning chastotasi, munosabat esa hodisaning nisbiy chastotasi deyiladi.
Nisbiy chastotaning statistik turg‘unlik xossasi deb ataluvchi xossasi mavjud, ya’ni tajribalar soni oshishi bilan nisbiy chastotasi ma’lum qonuniyatga ega bo‘ladi va biror son atrofida tebranib turadi.
Misol sifatida tanga tashlash tajribasini olaylik. Tanga A={Gerb} tomoni bilan tushishi hodisasini qaraylik. Byuffon va K.Pirsonlar tomonidan o‘tkazilgan tajribalar natijasi quyidagi jadvalda keltirilgan:
Tajribao‘tkazuvchi
Tajribalarsoni, n
Tushgangerblarsoni, nA
Nisbiychastota,
nA/n
Byuffon
4040
2048
0.5080
K.Pirson
12000
6019
0.5016
K.Pirson
24000
12012
0.5005
Jadvaldanko‘rinadiki, n ortgani sari nA/n nisbiychastota 0.5 gayaqinlasharekan.
Agar tajribalarsonietarlichako‘pbo‘lsavashutajribalardabiror hodisaningnisbiychastotasibiroro‘zgarmas son atrofidatebransa, busonga hodisaningstatistikehtimolligideyiladi.
hodisaning ehtimolligi simvol bilan belgilanadi. Demak,
yoki yetarlicha katta n lar uchun .
Statistik ehtimollikning kamchiligi shundan iboratki, bu yerda statistik ehtimollik yagona emas. Masalan, tanga tashlash tajribasida ehtimollik sifatida nafaqat 0.5, balki 0.49 yoki 0.51 ni ham olishimiz mumkin. Ehtimollikni aniq hisoblash uchun katta sondagi tajribalar o‘tkazishni talab qiladi, bu esa amaliyotda ko‘p vaqt va xarajatlarni talab qiladi.
Statistik ehtimollik quyidagi xossalarga ega:
;
Isboti. 1) Ihtiyoriy hodisaningchastotasiuchun . Etarlicha katta n lar uchun bo‘lgani uchun bo‘ladi.
2) Mumkin bo‘lmagan hodisa uchun nA=0.
3) Muqarrar hodisaning chastotasi nA=n. 4) Agar bo‘lsa, u holda va
.