Oliy va o’rta maxsus ta’lim vazirligi tеrmiz davlat univеrsitеti



Yüklə 1,01 Mb.
səhifə15/15
tarix27.01.2023
ölçüsü1,01 Mb.
#122619
1   ...   7   8   9   10   11   12   13   14   15
Bekboyev Abdimo\'min Begbo\'ta o\'g\'li (2)

III bob bo’yicha xulosa
Ushbu dissertatsiyaning uchinchi bobi ikki paragrafdan iborat bo’lib, bunda dissertatsiyaning natijalarini bayon qilishda asosoiy natijalar berilgan. Xususan uchunchi bobni o’rganish natijasida uch o’lchamli mono-Leybnits algebralarining markaziy kengaytmalari hamda ularning ba’zi muhim xossalari yoritib berilgan Mazkur bobning ikkinchi paragrida ko’p o’lchamli mono- Leybnits algebralarining ba’zi muhim xossalari keltirilgan. Umuman olganda bu bobda ishning asosiy natijalari olingan.


XULOSA

Ushbu dissertatsiyaning birinchi bobi uch paragrafdan iborat bo’lib, bunda dissertatsiyaning natijalarini bayon qilishda yordamchi bo’lgan asosiy tushunchalar berilgan. Xususan birinchi bobda Leybnits algebrasining asosiy tushunchalari, Leybnits algebrasining differensiallanishlari, yechimli va nilpotent Leybnits algebralari misollar, teorema va tariflar yordamida bayon qilingan.


Mazkur ish uch bobdan iborat bo‘lib, bunda dissertatsiyaning natijalarini bayon qilishda yordamchi bo‘lgan asosiy tushunchalar berilgan. Xususan, birinchi paragrafda unar leybnits algebrasiga doir asosiy tushunchalar va ularning xossalari, unar va binar leybnits algebralarining identifikatsiyalari bo’yicha tavsiflari, ta’rifi, teoremalari misollar orqali bayon qilindi. Ikkinchi va uchunchi paragrafda Mono-Leybnits algebralari va ularning xossalari, unar Leybnits algebralari bilan Malsev algebralari bog’liqligi ko’rsatilgan.
Ushbu dissertatsiyaning uchinchi bobi ikki paragrafdan iborat bo’lib, bunda dissertatsiyaning natijalarini bayon qilishda asosoiy natijalar berilgan. Xususan uchunchi bobni o’rganish natijasida uch o’lchamli mono-Leybnits algebralarining markaziy kengaytmalari hamda ularning ba’zi muhim xossalari yoritib berilgan Mazkur bobning ikkinchi paragrida ko’p o’lchamli mono- Leybnits algebralarining ba’zi muhim xossalari keltirilgan. Umuman olganda bu bobda ishning asosiy natijalari olingan.

FOYDALANILGAN ADABIYOTLAR RО‘YXATI
27. Khudoyberdiyev, A.Kh., Rakhimov, I. S., Said Husain, Sh. K. (2014). On classification of 5-dimensional solvable Leibniz algebras. Linear Algebra Appl. 457:428–454.
28. Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2), 39(3-4):269–293.
29. Mubarakzjanov, G. M. (1963). On solvable Lie algebras. (Russian), Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 1:114–123.
30. Ndogmo, J. C., Winternitz, P. (1994). Solvable Lie algebras with abelian nilradicals. J. Phys. A: Math. Gen. 27(2):405–423.
31. Rubin, J. L., Winternitz, P. (1993). Solvable Lie algebras with Heisenberg ideals. J. Phys. A 26(5):1123–1138.
32. Sattorov, A. M., Khalkulova, Kh. A. (2017). The description solvable Leibniz algebras with five-dimensional quasifiliform Lie nilradical of maximal length. Uzbek Math. J., 4:150–159.
33. Shabanskaya, A. (2017). Solvable extensions of naturally graded quasi-filiform Leibniz algebras of second type L1 and L3. Comm. Algebra 45(10):4492–4520.
34. Shabanskaya, A. (2018). Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type L2. Comm. Algebra 46(11):5006–5031.
35. Shabanskaya, A. (2020). Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type L4. Comm. Algebra 48(2):490–507.
36. Shabanskaya, A. (2020). Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type L5. Comm. Algebra. DOI: 10.1080/00927872.2020.1834574.
37. Šnobl, L., Winternitz, P. (2005). A class of solvable Lie algebras and their Casimir invariants. J. Phys. A: Math. Gen. 38(12):2687–2700.
38. Wang, Y., Lin, J., Deng Sh. (2008). Solvable Lie algebras with quasi-filiform nilradicals. Comm. Algebra 36(11):4052–4067.
39. Gorbatsevich V.V., On Liezation of the Leibniz Algebras and its Applications, Russian Mathematics (Izv. VUZ), 2016, 60(4), 10–16 (Original Russian textpublished in Izvestiya Visshikh Uchebnykh Zavedenii. Matematika, 2016, 4,14–22).
40. Malcev A.I., On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra, Dokl. Akad. Nauk SSSR, 1942, 36(2), 42–45(in Russian)
41. Morozov V.V., Classification of nilpotent Lie algebras of 6-th order, Izvestiia Vyssih Uchebnyh Zavedenii, Matematika, 1958, 161–171 (in Russian).
42. Patsourakos A., On nilpotent properties of Leibniz algebras, Communicationsin Algebra, 2007, 35, 3828–3834.
43. Patsourakos A., On solvable Leibniz algebras, Bulletin of the Greek Mathematical Society, 2008, 55, 59–63.
44. Dzhumadil'daev A., Abdykassymova S., Leibniz algebras in characteristic p; C.R. Acad. Sci., Serie I, Paris, 2001, 332, 1047-1052.


Yüklə 1,01 Mb.

Dostları ilə paylaş:
1   ...   7   8   9   10   11   12   13   14   15




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin