Measurement of coseismic deformation by satellite geodesy



Yüklə 379,02 Kb.
səhifə1/11
tarix27.10.2017
ölçüsü379,02 Kb.
#16359
  1   2   3   4   5   6   7   8   9   10   11

GDR INSAR & GDR STRAINSAR Feigl et al. 2017-10-27


Final Report of GDR STRAINSAR
Bilan scientifique du

GDR INSAR (1997-2000) et du GDR STRAINSAR (2001-2004)
For consideration by section 18 of the CNRS

Number of characters = 186501

Number of words = 27666

Number of pages =

File name
Kurt L. Feigl

Department of Terrestrial and Planetary Dynamics (UMR 5562)

Centre National de la Recherche Scientifique

14 ave. E. Belin

31400 Toulouse

France


feigl@dtp.obs-mip.fr

Fax. +33 5 61 33 29 00


Table of contents


Table of contents 2

People 3

Geodetic Techniques For Measuring Deformation Using Satellite Data 3

GPS 3

SAR interferometry 4

Correlation of two optical images acquired by optical satellites such as SPOT 5

Correlation of two SAR backscatter images acquired by the radar satellites such as ERS 7

Advances published between 1997 and 2004 8

Coseismic deformation for earthquakes 8

Volcanos 9

Landslides and subsidence 9

Glaciers 9

Interseismic Deformation 9

Postseismic Deformation 9

Troposphere 10

Orbits 11

Satellite missions 11

Services Provided by GDR INSAR and GDR STRAINSAR 13

mail list (insar@pontos.cst.cnes.fr) 13

Catalog of ERS-1 and ERS-2 orbits 13

Software for selecting interferometrically compatible pairs from ERS-1 and ERS-2 catalog 13

Software for filtering interferograms 13

Future Satellite Missions 15

Subscribers to mail list insar@pontos.cst.cnes.fr (2005) 16

Glossary 19

Acknowledgments 20

Bibliography of GDR INSAR and GDR STRAINSAR 21

1993-1994 21

GDR INSAR (1995-1999) – 53 peer-reviewed publications 21

GDR STRAINSAR (2000-2005) 98 peer-reviewed publications 23

Theses 37

Selected conference proceedings 1997- 2000 38

Other References Cited 39

END 41





People


Our community includes:

Over 100 people subscribed to the mail list (insar@pontos.cst.cnes.fr)


See section below entitled “Subscribers to mail list insar@pontos.cst.cnes.fr”.

The authors of over 150 publications in peer-reviewed journals between 1997 and 2005


See section below entitled “Bibliography of GDR INSAR”.

Over a dozen doctoral degrees related to INSAR between 1997 and 2005


See section below entitled “Theses”.

Over 50 people have participated in DIAPASON short courses since 1997

Geodetic Techniques For Measuring Deformation Using Satellite Data


Tectonic geodesy took a great leap forward when we published the first coseismic interferogram on the cover of Nature in the summer of 1993 [Massonnet et al., 1993]. Twelve years later, in 2005, interferometry on synthetic aperture radar images (INSAR) has become a widely used and widely accepted geophysical technique for measuring topography and deformation of the Earth’s lithosphere and cryosphere. Confronted with conventional models, these INSAR measurements have significantly advanced the study of earthquakes, volcanos, landslides, subsidence and glaciers.

GPS


The Global Positioning System can achieve sub-centimeter estimates of relative position with a relatively inexpensive and lightweight instrument for less than “10 kg, 10 Watts, and 10 $K”. Since the most precise solutions involve post-processing data from multiple instruments, it typically requires several days between acquisition and estimate. The constellation of satellites came into use gradually beginning in 1985 and becoming fully operational in 1992. Data from this early period are typically more difficult to analyze and may yield less precise results than more recent surveys. For reviews of geophysical applications, see Dixon [1991], Hager et al., [1991], and Segall and Davis [1997]. For earthquake studies, GPS networks tend to operate in one of two end-member modes: Continuous operation of permanently installed, widely-spaced antennas (CGPS), or intermittent occupation of densely-spaced benchmarks in “campaign” mode. The former offers good temporal resolution (1 measurement/30 seconds = 33 mHz) but poor spatial resolution (> 100 km between stations), while the latter offers poor temporal resolution (1 measurement/year = 32 nHz) and good spatial resolution (~10 km between stations). This trade-off between temporal and spatial resolution creates a difficult decision in the face of limited resources. Although a compromise “hybrid” strategy could rotate expensive receivers on a roughly monthly basis through several fixed monuments, this approach has yet to be deployed, apparently because it requires more manpower than permanent installations.

Figure 1. Left: Map of Izmit region showing GPS sites (4-character, named sites are continuous stations operating before and after the main shock; two additional continuous stations used in this study are located off the map at 40.61°N, 27.59°E, and 40.97°N, 27.96°E) and observed (including 95% confidence ellipses) and modeled (yellow arrows) horizontal coseismic displacements relative to a station in Ankara, Turkey (ANKR, located at 39.89°N, 32.76°E). The five segment fault model used to investigate slip distribution the Izmit earthquake epicenter and focal mechanism from the Harvard CMT Catalog (http://www.seismology.harvard.edu/CMTsearch.html), and pre-earthquake seismicity (http://quake.geo.berkeley.edu/cnss) are also shown. Light lines are mapped or inferred faults [Barka, 1997]. MV = Mudurnu Valley fault. Right: Map of observed postseismic GPS station displacements (black arrows) relative to ANKR (located at 39.89°N, 32.76°E) during the first 75 days following the earthquake. Error ellipses indicate 95% confidence intervals. Modeled station displacements (yellow arrows) were computed with the slip distributed dislocation model shown in Fig. 3C. Station names (four-character ID) indicate continuously operating sites installed within 48 hours following the main shock. Red dots indicate aftershocks of the first 30 days. The blue dotted line indicates the fault geometry used in the postseismic model inversions (note that the fault is extended to the east of the coseismic fault model to include the Duzce segment). The "beach ball" shows the location and focal mechanism of the MW 7.2, 12 November 1999, Düzce earthquake. From Reilinger et al. [2000].



Kataloq: files
files -> Fövqəladə hallar və həyat fəaliyyətinin təhlükəsizliyi”
files -> Azərbaycan Respublikası Kənd Təsərrüfatı Nazirliyi Azərbaycan Dövlət Aqrar Universiteti adau-nun 80 illik yubileyinə həsr edilir adau-nun elmi ƏSƏRLƏRİ g əNCƏ 2009, №3
files -> Ümumi məlumat Fənnin adı, kodu və kreditlərin sayı
files -> Mühazirəotağı/Cədvəl I gün 16: 40-18: 00 #506 V gün 15: 10-16: 30 #412 Konsultasiyavaxtı
files -> Mühazirə otağı/Cədvəl ivgün saat 13 40 15 00 otaq 410 Vgün saat 13 40 15 00
files -> TƏDRİs plani iXTİsas: 050407 menecment
files -> AZƏrbaycan respublikasi təHSİl naziRLİYİ XƏZƏr universiteti TƏHSİl faküLTƏSİ
files -> Mühazirə otağı/Cədvəl Məhsəti küç., 11 (Neftçilər kampusu), 301 n saylı otaq Mühazirə: Çərşənbə axşamı, saat 16. 40-18. 00

Yüklə 379,02 Kb.

Dostları ilə paylaş:
  1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©muhaz.org 2022
rəhbərliyinə müraciət

    Ana səhifə